Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychiatry Clin Neurosci ; 76(5): 179-186, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35037330

RESUMO

AIM: Information processing is supported by the cortico-cortical transmission of neural oscillations across brain regions. Recent studies have demonstrated that the rhythmic firing of neural populations is not random but is governed by interactions with other frequency bands. Specifically, the amplitude of gamma-band oscillations is associated with the phase of lower frequency oscillations in support of short and long-range communications among networks. This cross-frequency relation is thought to reflect the temporal coordination of neural communication. While schizophrenia patients show abnormal oscillatory responses across multiple frequencies at rest, it is unclear whether the functional relationships among frequency bands are intact. This study aimed to characterize the lower frequency (delta/theta, 1-8 Hz) phase and the amplitude of gamma oscillations in healthy subjects and schizophrenia patients at rest. METHODS: Low frequency-phase (delta- and theta- band) angles and gamma-band amplitude relationships were assessed in 142 schizophrenia patients and 128 healthy subjects. RESULTS: Significant low-frequency phase alteration related to high-power gamma was detected across broadly distributed scalp regions in both healthy subjects and patients. In patients, delta phase synchronization related to high-power gamma was significantly decreased at the frontocentral, right middle temporal, and left temporoparietal electrodes but significantly increased at the left parietal electrode. CONCLUSIONS: High-power gamma-related delta phase alteration may reflect a core pathophysiologic abnormality in schizophrenia. Data-driven measures of functional relationships among frequency bands may prove useful in the development of novel therapeutics. Future studies are needed to determine whether these alterations are specific to schizophrenia or appear in other neuropsychiatric patient populations.


Assuntos
Esquizofrenia , Encéfalo , Cognição , Eletroencefalografia , Humanos
2.
Schizophr Res ; 231: 73-81, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33780847

RESUMO

BACKGROUND: Schizophrenia patients have abnormal electroencephalographic (EEG) power over multiple frequency bands, even at rest, though the primary neural generators and spatiotemporal dynamics of these abnormalities are largely unknown. Disturbances in the precise synchronization of oscillations within and across cortical sources may underlie abnormal resting-state EEG activity in schizophrenia patients. METHODS: A novel assessment method was applied to identify the independent contributing sources of resting-state EEG and assess the phase discontinuity in schizophrenia patients (N = 148) and healthy subjects (N = 143). RESULTS: A network of 11 primary contributing sources of scalp EEG was identified in both groups. Schizophrenia patients showed abnormal elevations of EEG power in the temporal region in the theta, beta, and gamma-bands, as well as the posterior cingulate gyrus in the delta, theta, alpha, and beta-bands. The higher theta-band power in the middle temporal gyrus was significantly correlated with verbal memory impairment in patients. The peak frequency of alpha was lower in patients in the cingulate and temporal regions. Furthermore, patients showed a higher rate of alpha phase discontinuity in the temporal region as well as a lower rate of theta phase discontinuity in the temporal and posterior cingulate regions. CONCLUSIONS: Abnormal rates of phase discontinuity of alpha- and theta-band, abnormal elevations of EEG power in multiple bands, and a lower peak frequency of alpha were identified in schizophrenia patients at rest. Clarification of the mechanistic substrates of abnormal phase discontinuity may clarify core pathophysiologic abnormalities of schizophrenia and contribute to the development of novel biomarkers for therapeutic interventions.


Assuntos
Esquizofrenia , Encéfalo , Eletroencefalografia , Humanos , Memória , Lobo Temporal
3.
Psychiatry Clin Neurosci ; 75(5): 172-179, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33470494

RESUMO

AIM: Gamma-band auditory steady-state response (ASSR) is a neurophysiologic index that is increasingly used as a translational biomarker in the development of treatments of neuropsychiatric disorders. While gamma-band ASSR is generated by distributed networks of highly interactive temporal and frontal cortical sources, the majority of human gamma-band ASSR studies using electroencephalography (EEG) highlight activity from only a single frontocentral scalp site, Fz, where responses tend to be largest and reductions in schizophrenia patients are most evident. However, no previous study has characterized the relative source contributions to Fz, which is a necessary step to improve the concordance of preclinical and clinical EEG studies. METHODS: A novel method to back-project the contributions of independent cortical source components was applied to assess the independent sources and their proportional contributions to Fz as well as source-resolved responses in 432 schizophrenia patients and 294 healthy subjects. RESULTS: Independent contributions of gamma-band ASSR to Fz were detected from orbitofrontal, bilateral superior/middle/inferior temporal, bilateral middle frontal, and posterior cingulate gyri in both groups. In contrast to expectations, the groups showed comparable source contribution weight to gamma-band ASSR at Fz. While gamma-band ASSR reductions at Fz were present in schizophrenia patients consistent with previous studies, no group differences in individual source-level responses to Fz were detected. CONCLUSION: Small differences in multiple independent sources summate to produce scalp-level differences at Fz. The identification of independent source contributions to a single scalp sensor represents a promising methodology for measuring dissociable and homologous biomarker targets in future translational studies.


Assuntos
Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Lobo Frontal/fisiologia , Ritmo Gama/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Biomarcadores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Schizophr Res ; 228: 280-287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33493776

RESUMO

BACKGROUND: Schizophrenia patients show widespread deficits in neurocognitive, clinical, and psychosocial functioning. Mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are robust translational biomarkers associated with schizophrenia and associated with cognitive dysfunction, negative symptom severity, and psychosocial disability. Although these biomarkers are conceptually linked as measures of early auditory information processing, it is unclear whether MMN and gamma-band ASSR account for shared vs. non-shared variance in cognitive, clinical, and psychosocial functioning. METHODS: Multiple regression analyses with MMN, gamma-band ASSR, and clinical measures were performed in large cohorts of schizophrenia outpatients (N = 428) and healthy comparison subjects (N = 283). RESULTS: Reduced MMN (d = 0.67), gamma-band ASSR (d = -0.40), and lower cognitive function were confirmed in schizophrenia patients. Regression analyses revealed that reduced MMN amplitude showed unique associations with lower verbal learning and negative symptoms, reduced gamma-band ASSR showed a unique association with working memory deficits, and both reduced MMN amplitude and reduced gamma-band ASSR showed an association with daily functioning impairment in schizophrenia patients. CONCLUSION: MMN and ASSR measures are non-redundant and complementary measures of early auditory information processing that are associated with important domains of functioning. Studies are needed to clarify the neural substrates of MMN and gamma-band ASSR to improve our understanding of the pathophysiology of schizophrenia and accelerate their use in the development of novel therapeutic interventions.


Assuntos
Esquizofrenia , Estimulação Acústica , Percepção Auditiva , Cognição , Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Memória de Curto Prazo , Esquizofrenia/complicações
5.
Int J Psychophysiol ; 161: 76-85, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33453303

RESUMO

BACKGROUND: Mismatch negativity (MMN) and P3a are event-related potential measures of early auditory information processing that are increasingly used as translational biomarkers in the development of treatments for neuropsychiatric disorders. These responses are reduced in schizophrenia patients over the frontocentral scalp electrodes and are associated with important domains of cognitive and psychosocial functioning. While MMN and P3a responses are generated by a dynamic network of cortical sources distributed across the temporal and frontal brain regions, it is not clear how these sources independently contribute to MMN and P3a at the primary frontocentral scalp electrode or to abnormalities observed in schizophrenia. This study aimed to determine the independent source contributions and characterize the magnitude of impairment in source-level MMN and P3a responses in schizophrenia patients. METHODS: A novel method was applied to back-project the contributions of 11 independent cortical source components to Fz, the primary scalp sensor that is used in clinical studies, in n = 589 schizophrenia patients and n = 449 healthy comparison subjects. RESULTS: The groups showed comparable individual source contributions underlying both MMN and P3a responses at Fz. Source-level responses revealed an increasing magnitude of impairment in schizophrenia patients from the temporal to more frontal sources. CONCLUSIONS: Schizophrenia patients have a normal architecture of source contributions that are accompanied by widespread abnormalities in source resolved mismatch and P3a responses, with more prominent deficits detected from the frontal sources. Quantification of source contributions and source-level responses accelerates clarification of the neural networks underlying MMN reduction at Fz in schizophrenia patients.


Assuntos
Esquizofrenia , Encéfalo , Eletroencefalografia , Potenciais Evocados , Potenciais Evocados Auditivos , Lobo Frontal , Humanos
6.
Schizophr Bull ; 47(2): 373-385, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32856089

RESUMO

Cognitive impairment is a hallmark of schizophrenia and a robust predictor of functional outcomes. Impairments are found in all phases of the illness and are only moderately attenuated by currently approved therapeutics. Neurophysiological indices of sensory discrimination (ie, mismatch negativity (MMN) and P3a amplitudes) and gamma-band auditory steady-state response (ASSR; power and phase locking) are translational biomarkers widely used in the development of novel therapeutics for neuropsychiatric disorders. It is unclear whether laboratory-based EEG measures add explanatory power to well-established models that use only cognitive, clinical, and functional outcome measures. Moreover, it is unclear if measures of sensory discrimination and gamma-band ASSR uniquely contribute to putative causal pathways linking sensory discrimination, neurocognition, negative symptoms, and functional outcomes in schizophrenia. To answer these questions, hierarchical associations among sensory processing, neurocognition, clinical symptoms, and functional outcomes were assessed via structural equation modeling in a large sample of schizophrenia patients (n = 695) and healthy comparison subjects (n = 503). The results showed that the neurophysiologic indices of sensory discrimination and gamma-band ASSR both significantly contribute to and yield unique hierarchical, "bottom-up" effects on neurocognition, symptoms, and functioning. Measures of sensory discrimination showed direct effects on neurocognition and negative symptoms, while gamma-band ASSR had a direct effect on neurocognition in patients. Continued investigation of the neural mechanisms underlying abnormal networks of MMN/P3a and gamma-band ASSR is needed to clarify the pathophysiology of schizophrenia and the development of novel therapeutic interventions.


Assuntos
Disfunção Cognitiva/fisiopatologia , Discriminação Psicológica/fisiologia , Potenciais Evocados Auditivos/fisiologia , Ritmo Gama/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Atenção , Percepção Auditiva , Disfunção Cognitiva/etiologia , Potenciais Evocados P300/fisiologia , Humanos , Esquizofrenia/complicações
7.
Artigo em Inglês | MEDLINE | ID: mdl-33340619

RESUMO

Gamma-band (40-Hz) activity is critical for cortico-cortical transmission and the integration of information across neural networks during sensory and cognitive processing. Patients with schizophrenia show selective reductions in the capacity to support synchronized gamma-band oscillations in response to auditory stimulation presented 40-Hz. Despite widespread application of this 40-Hz auditory steady-state response (ASSR) as a translational electroencephalographic biomarker for therapeutic development for neuropsychiatric disorders, the spatiotemporal dynamics underlying the ASSR have not been fully characterized. In this study, a novel Granger causality analysis was applied to assess the propagation of gamma oscillations in response to 40-Hz steady-state stimulation across cortical sources in schizophrenia patients (n = 426) and healthy comparison subjects (n = 293). Both groups showed multiple ASSR source interactions that were broadly distributed across brain regions. Schizophrenia patients showed distinct, hierarchically sequenced connectivity abnormalities. During the response onset interval, patients exhibited abnormal increased connectivity from the inferior frontal gyrus to the superior temporal gyrus, followed by decreased connectivity from the superior temporal to the middle cingulate gyrus. In the later portion of the ASSR response (300-500 ms), patients showed significantly increased connectivity from the superior temporal to the middle frontal gyrus followed by decreased connectivity from the left superior frontal gyrus to the right superior and middle frontal gyri. These findings highlight both the orchestration of distributed multiple sources in response to simple gamma-frequency stimulation in healthy subjects as well as the patterns of deficits in the generation and maintenance of gamma-band oscillations across the temporo-frontal sources in schizophrenia patients.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Ritmo Gama/fisiologia , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Córtex Auditivo/diagnóstico por imagem , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem
8.
Front Psychiatry ; 11: 608154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329160

RESUMO

Background: Patients with schizophrenia show abnormal spontaneous oscillatory activity in scalp-level electroencephalographic (EEG) responses across multiple frequency bands. While oscillations play an essential role in the transmission of information across neural networks, few studies have assessed the frequency-specific dynamics across cortical source networks at rest. Identification of the neural sources and their dynamic interactions may improve our understanding of core pathophysiologic abnormalities associated with the neuropsychiatric disorders. Methods: A novel multivector autoregressive modeling approach for assessing effective connectivity among cortical sources was developed and applied to resting-state EEG recordings obtained from n = 139 schizophrenia patients and n = 126 healthy comparison subjects. Results: Two primary abnormalities in resting-state networks were detected in schizophrenia patients. The first network involved the middle frontal and fusiform gyri and a region near the calcarine sulcus. The second network involved the cingulate gyrus and the Rolandic operculum (a region that includes the auditory cortex). Conclusions: Schizophrenia patients show widespread patterns of hyper-connectivity across a distributed network of the frontal, temporal, and occipital brain regions. Results highlight a novel approach for characterizing alterations in connectivity in the neuropsychiatric patient populations. Further mechanistic characterization of network functioning is needed to clarify the pathophysiology of neuropsychiatric and neurological diseases.

9.
Front Psychiatry ; 11: 832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110410

RESUMO

BACKGROUND: Schizophrenia patients exhibit cognitive deficits across multiple domains, including verbal memory, working memory, and executive function, which substantially contribute to psychosocial disability. Gamma oscillations are associated with a wide range of cognitive operations, and are important for cortico-cortical transmission and the integration of information across neural networks. While previous reports have shown that schizophrenia patients have selective impairments in the ability to support gamma oscillations in response to 40-Hz auditory stimulation, it is unclear if patients show abnormalities in gamma power at rest, or whether resting-state activity in other frequency bands is associated with cognitive functioning in schizophrenia patients. METHODS: Resting-state electroencephalogram (EEG) was assessed over 3 min in 145 healthy comparison subjects and 157 schizophrenia patients. Single-word reading ability was measured via the reading subtest of the Wide Range Achievement Test-3 (WRAT). Auditory attention and working memory were evaluated using Letter-Number Span and Letter-Number Sequencing. Executive function was assessed via perseverative responses on the Wisconsin Card Sorting Test (WCST). Verbal learning performance was measured using the California Verbal Learning Test second edition (CVLT-II). RESULTS: Schizophrenia patients showed normal levels of delta-band power but abnormally elevated EEG power in theta, alpha, beta, and gamma bands. An exploratory correlation analysis showed a significant negative correlation of gamma-band power and verbal learning performance in schizophrenia patients. CONCLUSIONS: Patients with schizophrenia have abnormal resting-state EEG power across multiple frequency bands; gamma-band abnormalities were selectively and negatively associated with impairments in verbal learning. Resting-state gamma-band EEG power may be useful for understanding the pathophysiology of cognitive dysfunction and developing novel therapeutics in schizophrenia patients.

10.
Neuropsychopharmacology ; 45(13): 2198-2206, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32829382

RESUMO

Synaptic interactions between parvalbumin-positive γ-aminobutyric acid (GABA)-ergic interneurons and pyramidal neurons evoke cortical gamma oscillations, which are known to be abnormal in schizophrenia. These cortical gamma oscillations can be indexed by the gamma-band auditory steady-state response (ASSR), a robust electroencephalographic (EEG) biomarker that is increasingly used to advance the development of novel therapeutics for schizophrenia, and other related brain disorders. Despite promise of ASSR, the neural substrates of ASSR have not yet been characterized. This study investigated the sources underlying ASSR in healthy subjects and schizophrenia patients. In this study, a novel method for noninvasively characterizing source locations was developed and applied to EEG recordings obtained from 293 healthy subjects and 427 schizophrenia patients who underwent ASSR testing. Results revealed a distributed network of temporal and frontal sources in both healthy subjects and schizophrenia patients. In both groups, primary contributing ASSR sources were identified in the right superior temporal cortex and the orbitofrontal cortex. In conjunction with normal activity in these areas, schizophrenia patients showed significantly reduced source dipole density of gamma-band ASSR (ITC > 0.25) in the left superior temporal cortex, orbitofrontal cortex, and left superior frontal cortex. In conclusion, a distributed network of temporal and frontal brain regions supports gamma phase synchronization. We demonstrated that failure to mount a coherent physiologic response to simple 40-Hz stimulation reflects disorganized network function in schizophrenia patients. Future translational studies are needed to more fully understand the neural mechanisms underlying gamma-band ASSR network abnormalities in schizophrenia.


Assuntos
Córtex Auditivo , Esquizofrenia , Estimulação Acústica , Eletroencefalografia , Potenciais Evocados Auditivos , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-32830097

RESUMO

BACKGROUND: Auditory mismatch negativity (MMN) is a translatable event-related potential biomarker, and its reduction in schizophrenia is associated with the severity of clinical symptoms. While MMN recorded at the scalp is generated by a distributed network of temporofrontal neural sources, the primary contributing sources and the dynamic interactions among sources underlying MMN impairments in schizophrenia have not been previously characterized. METHODS: A novel data-driven analytic framework was applied to large cohorts of healthy comparison subjects (n = 449) and patients with schizophrenia (n = 589) to identify the independent contributing sources of MMN, characterize the patterns of effective connectivity underlying reduced MMN in patients, and explore the clinical significance of these abnormal source dynamics in schizophrenia. RESULTS: A network of 11 independent contributing sources underlying MMN distributed across temporofrontal cortices was identified. Orderly shifts in peak source activity were detected in a steplike manner, starting at temporal structures and progressing across frontal brain regions. MMN reduction in patients was predominantly associated with reduced contributions from 3 frontal midline sources: orbitofrontal, anterior cingulate, and middle cingulate cortices. Patients showed increased connectivity from temporal to prefrontal regions in conjunction with decreased cross-hemispheric connectivity to prefrontal regions. The decreased connectivity strength of precentral to prefrontal regions in patients with schizophrenia was associated with greater severity of negative symptoms. CONCLUSIONS: Alterations in the dynamic interactions among temporofrontal sources underlie MMN abnormalities in schizophrenia. These results advance our understanding of the neural substrates and temporal dynamics of normal and impaired information processing with novel applications for translatable biomarkers of neuropsychiatric disorders.


Assuntos
Esquizofrenia , Encéfalo , Córtex Cerebral , Potenciais Evocados , Lobo Frontal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...